4 research outputs found

    Non-commutative flux representation for loop quantum gravity

    Get PDF
    The Hilbert space of loop quantum gravity is usually described in terms of cylindrical functionals of the gauge connection, the electric fluxes acting as non-commuting derivation operators. It has long been believed that this non-commutativity prevents a dual flux (or triad) representation of loop quantum gravity to exist. We show here, instead, that such a representation can be explicitly defined, by means of a non-commutative Fourier transform defined on the loop gravity state space. In this dual representation, flux operators act by *-multiplication and holonomy operators act by translation. We describe the gauge invariant dual states and discuss their geometrical meaning. Finally, we apply the construction to the simpler case of a U(1) gauge group and compare the resulting flux representation with the triad representation used in loop quantum cosmology.Comment: 12 pages, matches published versio

    Quantum simplicial geometry in the group field theory formalism: reconsidering the Barrett-Crane model

    Full text link
    A dual formulation of group field theories, obtained by a Fourier transform mapping functions on a group to functions on its Lie algebra, has been proposed recently. In the case of the Ooguri model for SO(4) BF theory, the variables of the dual field variables are thus so(4) bivectors, which have a direct interpretation as the discrete B variables. Here we study a modification of the model by means of a constraint operator implementing the simplicity of the bivectors, in such a way that projected fields describe metric tetrahedra. This involves a extension of the usual GFT framework, where boundary operators are labelled by projected spin network states. By construction, the Feynman amplitudes are simplicial path integrals for constrained BF theory. We show that the spin foam formulation of these amplitudes corresponds to a variant of the Barrett-Crane model for quantum gravity. We then re-examin the arguments against the Barrett-Crane model(s), in light of our construction.Comment: revtex, 24 page

    Towards classical geometrodynamics from Group Field Theory hydrodynamics

    Full text link
    We take the first steps towards identifying the hydrodynamics of group field theories (GFTs) and relating this hydrodynamic regime to classical geometrodynamics of continuum space. We apply to GFT mean field theory techniques borrowed from the theory of Bose condensates, alongside standard GFT and spin foam techniques. The mean field configuration we study is, in turn, obtained from loop quantum gravity coherent states. We work in the context of 2d and 3d GFT models, in euclidean signature, both ordinary and colored, as examples of a procedure that has a more general validity. We also extract the effective dynamics of the system around the mean field configurations, and discuss the role of GFT symmetries in going from microscopic to effective dynamics. In the process, we obtain additional insights on the GFT formalism itself.Comment: revtex4, 32 pages. Contribution submitted to the focus issue of the New Journal of Physics on "Classical and Quantum Analogues for Gravitational Phenomena and Related Effects", R. Schuetzhold, U. Leonhardt and C. Maia, Eds; v2: typos corrected, references updated, to match the published versio

    Effective Hamiltonian Constraint from Group Field Theory

    Full text link
    Spinfoam models provide a covariant formulation of the dynamics of loop quantum gravity. They are non-perturbatively defined in the group field theory (GFT) framework: the GFT partition function defines the sum of spinfoam transition amplitudes over all possible (discretized) geometries and topologies. The issue remains, however, of explicitly relating the specific form of the group field theory action and the canonical Hamiltonian constraint. Here, we suggest an avenue for addressing this issue. Our strategy is to expand group field theories around non-trivial classical solutions and to interpret the induced quadratic kinematical term as defining a Hamiltonian constraint on the group field and thus on spin network wave functions. We apply our procedure to Boulatov group field theory for 3d Riemannian gravity. Finally, we discuss the relevance of understanding the spectrum of this Hamiltonian operator for the renormalization of group field theories.Comment: 14 page
    corecore